Speech separation using speaker-adapted eigenvoice speech models
نویسندگان
چکیده
We present a system for model-based source separation for use on single channel speech mixtures where the precise source characteristics are not known a priori. The sources are modeled using hidden Markov models (HMM) and separated using factorial HMM methods. Without prior speaker models for the sources in the mixture it is difficult to exactly resolve the individual sources because there is no way to determine which state corresponds to which source at any point in time. This is solved to a small extent by the temporal constraints provided by the Markov models, but permutations between sources remains a significant problem. We overcome this by adapting the models to match the sources in the mixture. We do this by representing the space of speaker variation with a parametric signal model based on the eigenvoice technique for rapid speaker adaptation. We present an algorithm to infer the characteristics of the sources present in a mixture, allowing for significantly improved separation performance over that obtained using unadapted source models. The algorithm is evaluated on the task defined in the 2006 Speech Separation Challenge (Cooke and Lee, 2008) and compared with separation using source-dependent models. Although performance is not as good as with speaker-dependent models, we show that the system based on model adaptation is able to generalize better to held out speakers.
منابع مشابه
Emotional transplant in statistical speech synthesis based on emotion additive model
This paper proposes a novel method to transplant emotions to a new speaker in statistical speech synthesis based on an emotion additive model (EAM), which represents the differences between emotional and neutral voices. This method trains EAM using neutral and emotional speech data of multiple speakers and applies it to a neutral voice model of a new speaker (target). There is some degradation ...
متن کاملHybrid nearest-neighbor/cluster adaptive training for rapid speaker adaptation in statistical speech synthesis systems
Statistical speech synthesis (SSS) approach has become one of the most popular methods in the speech synthesis field. An advantage of the SSS approach is the ability to adapt to a target speaker with a couple of minutes of adaptation data. However, many applications, especially in consumer electronics, require adaptation with only a few seconds of data which can be done using eigenvoice adaptat...
متن کاملSpeaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Eigenspace-based speaker adaptation methods in Persian speech recognition systems
Among speaker adaptation algorithms, eigenvoice (EV) and eigenspace-based MLLR (EMLLR) adaptation approaches have been proposed for rapid adaptation with very limited adaptation data. In these methods, a speaker adapted model is constrained to be a weighted combination of some orthogonal basis vectors. In this manner, both the number of parameters to be estimated from the adaptation data, and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Speech & Language
دوره 24 شماره
صفحات -
تاریخ انتشار 2010